NATIONAL ADVISORY COMMITTEE
FOR AERONAUTICS

NACA TN 2646 %~

TECHNICAL NOTE 2646

INVISCID FLOW ABOUT AIRFOILS AT HIGH SUPERSONIC SPEEDS

By A. J. Eggers, Jr., and Clarence A. Syvertson

Ames Aeronautical Laboratory
Moffett Field, Calif.

Washington
March 1952

DISTRIBUTION STATEMENT A
Approved for Public Release
Distribution Unlimited

{ 121 1£200002

(DIEC GUALITY INSPHCTED 4
Reproduced From

Best Available Copy M MO0 - 10 ~3 255




NATTONAL, ADVISORY COMMITTEE FOR AERONAUTICS

TECHNICAL NOTE 2646

INVISCID FLOW ABOUT AIRFOILS AT HIGH SUPERSONIC SPEEDS

By A. J. Eggers, Jr., and Clarence A, Syvertson
SUMMARY

Steady flow about curved airfoils is investigated analytically at
high supersonic speeds. Assuming air behaves as an ideal dilatomic gas,
it is found that small pressure disturbances emanating from the surface
of an airfoil are almost completely absorbed in the leading~edge shock
wave (or a shock wave emanating from any other location on the surface),
provided the flow deflection angles are not too close to those corre=
sponding to shock detachment. This result is found to be essentially
independent of Mach number. As a consequence, it is shown that within
the limitations of the assumption of ideal gas flow, the shock-expansion
method may be used with good accuracy to predict pressure distributions
on curved airfoils at arbitrarily high Mach numbers. This observation
is verified with the aid of the method of characteristics applied to a
10~percent-thick biconvex airfoil at 0° angle of attack, It is further
shown that the shocke-expansion method can be easily employed to con=-
struct the entire flow field about a curved airfoil, accounting for
shock-wave curvature and resulting entropy gradients in the flow.

An approximation to the shock-expansion method for thin airfoils
at high Mach numbers is also investigated, and is found to yield pres-
sure distributions in error by less than 10 percent at Mach numbers
above 3 and flow deflection angles up to 25°. This slender-airfoil
method is relatively simple in form and thus may prove useful for some
engineering purposes. To this end, tables are presented to facilitate
its use, '

Effects of caloric imperfections of air manifest in disturbed flow
fields at high Mach numbers are investigated, particular attention being
given to the reduction of the ratio of specific heats from 1.4 toward
1.0. So long as this ratio does not decrease appreciably below 1.3, it
is indicated that the shock-expansion method, generalized to include
effects of these imperfections, should be substantially as accurate as -
for ideal gas flows. This point is checked by comparing pressure distri-
butions predicted by theé generalized shock-expansion method and a gen=-
eralized method of characteristics. Both methods are employed in forms
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applicable for local air temperatures up to about 5000° Rankine, corre-
sponding, for slender airfoils, to Mach numbers up to the order of the
so~called escape Mach number. Caloric imperfections caused reductions
in the pressure coefficients below those predicted for flows of an
ideal gas. TIn turn, there is a general reduction in force and moment
coefficients up to 10 percent.

The slender-airfoil method is modified to employ an average value
of the ratio of specific heats for a particular flow field, This sim-
plified method has essentially the same accuracy for imperfect gas
flows as its counterpart has for ideal gas flows,

An approximate flow analysis is made at extremely high Mach numbers
where it is indicated that the ratio of specific heats may approach
close to 1. It is found that the shock-expansion method may be in con=-.
slderable error as disturbances incident on the leading~edge shock wave
are no longer largely absorbed in the wave, In this case, however, the
Busemann method for the limit of infinite free-stream Mach number and
specific heat ratio of 1 appears to apply with reasonable accuracy.

INTRODUCTION

Small-disturbance, potential-flow theories have been employed
widely, and for the most part successfully, for predicting the pressures
(and velocities) at the surface of an airfoil in steady motion at low
supersonic speeds. Thus the linear theory of Ackeret (reference 1) has
proven particularly useful in studying the flow about relatively thin,
sharp-nosed airfoils at small angles of attack, while the second-order
theory of Busemann (reference 2) has found application when thicker
airfoils at larger angles of attack were under consideration. At high
free~-stream Mach numbers the range of applicability of any potential
theory is seriously limited, however, due to the production of strong
shocks by even the relatively small flow deflections caused by thin
airfoils. The assumption of potential flow is invalidated, of course,
by the pronounced entropy rises occurring through these shocks.

This limitation on potential theories was early recognized and led
to the adoption (see reference 3) of what is now commonly called the
shock~expansion method., The latter method derives its advantage over
potential theories principally by accounting for the entropy rise
through the oblique shock emanating from the leading edge of a sharp-
nosed airfoil, Consequently, so long as the disturbed air behaves
essentially like an ideal gas, and so long as entropy gradients normal
to the streamlines (due to curvature of the surface) do not signifi-
cantly influence flow at the surface, the shock-expansion theory should
predict the pressures at the surface of an airfoil with good accuracy =
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it is tacitly assumed, of course, that the flow velocity 1s everywhere
supersonic, and that the Reynolds number of the flow is sufficiently
large to minimize viscous effects on surface pressures.

The departure of the behavior of air from that of an ideal gas at
the temperatures encountered in flight at high supersonic . speeds has
been the subject of some investigation in the case of flows through
oblique shock waves. In reference 4, the effects of thermal and caloric
imperfections on the pressure rise across an oblique shock wave was
investigated at sea=~level Mach numbers of 10 and 20 and it was found
that these effects decreased the rise by less than 5 percent for maximum
temperatures up to 3000° R (corresponding to flow deflectlon angles up
to 24°), This decrease was found to be due almost entirely to caloric
imperfections or changes in vibrational heat capacities of the air pass-
ing through the shock wave. The changes in temperature and density of
the air passing through the wave were affected to a considerably greater
extent, Subsequently, an investigation was carried out by Ivey and
Cline up to Mach numbers as high as 100 (reference 5) using the results
for normal shock waves obtained by Bethe and Teller considering effects
of dissociation (reference 6). As would be expected, the pressures
were found to be affected to a somewhat greater extent at the higher
Mach numbers,

The extent to which flow in the region of the leading edge of an
airfoil departs from the simple Prandtl-Meyer type has also been inves-
tigated at high supersonic airspeeds. If the surface is curved, for
example, to give an expanding flow downstream of the leading edge,
expansion waves from the surface will interact with the nose shock wave,
thereby curving it and yielding a nonisentropic flow field. This fiow
field may be characterized not only by disturbances emanating from the
surface but also by disturbances reflecting to some extent from the
shock wave back toward the surface. The manner in which these phenomena
dictate shock-wave curvature and surface pressure gradient in ideal gas
flows at the leading edge has been treated by Crocco (reference T7) and
more recently by Schaefer (reference 8), Munk and Prim (reference 9),
and others. 1In the cases considered by Munk and Prim it was found that
surface pressure gradients were less (in absolute Value) than those
obtained assuming Prandtl-Meyer flow at the higher Mach numbers (i.e.,
Mach numbers greater than about 3) although generally by no more than
about 10 percent. Since curved airfoils are likely to be of fundamen=-
tal interest at high flight speeds (see, e.g., reference 10), these
phenomena would appear to merit further investigation, particularly as
regards their influence on the whole flow field. In addition it would
appear desirable to consider effects of gaseous imperfections through-
out the field.
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Such an investigation has therefore been undertaken in the present
report uding the method of characteristics to accurately obtain flow
flelds, and as a basis for obtaining the more approximate methods of
analysis. The method is employed in a generaligzed form which allows
caloric imperfections as well as entropy gradients in the flow to be
considered at temperatures up to the order of 5000° R ~ thermal imper-
fections are neglected as being unimportant in atmospheric air flows
(see reference 4). A 10-percent-thick biconvex airfoil is treated at
Mach numbers from 3.5 to infinity, and the results are compared with
the predictions of the shock-expansion method, including a simplified
form of the method applicable to slender airfoils at high Mach numbers,
and a generalized form of the method including effects of caloric
imperfections.

SYMBOLS
a local speed of sound, feet per second
c chord, feet
C,; C, characteristic coordinates (C, positively inclined and Cp
negatively inclined with respect to the local velocity
vector)
Cg section drag coefficient
Cy section 1ift coefficient
Cm section moment coefficient (moment taken about leading edge)
Cp pressure coefficient <p _ PO)
9o
Cp specific heat at constant pressure, foot-pounds per slug OR
Cy specific heat at constant volume, foot-pounds per slug OR
M Mach number (ratio of local velocity to local speed of sound)
P static pressure, pounds per square foot
q dynamic pressure, pounds per square foot

R gas constant, foot-pounds per slug °R
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s,n rectangular coordinates (in streamline direction and normal
to streamline direction, respectively)

T temperature, °R

t time, seconds

v resultant velocity, feet per second

X,y rectangular'coordinates

a angle of attack, radians unless otherwise specified
B Mach angle, arc sine <i—>, radians

V4 ratio of specific heats <g%>

(Average value of 7 is 7a.)

Q] flow deflection angle, radians unless otherwise specified
0 molecular vibrational energy constant, °R (5500° R for air)
o mass density, slugs per cubic foot
o shock~wave angle, radians
w ray angle for Prandtl-Meyer flow, radians
Subscripts
o] free~stream conditions
é’g’ }- conditions at different points in flow field
, L R
i ideal gas quantities
N conditions just downstream of shock wave
S conditions on streamline
Superscript

- ' vector quantities
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DEVELOPMENT OF METHODS OF ANALYSIS

Method of Characteristics

Two=dimensional rotational supersonic flows have been treated by
numerous authors with the aid of the method of characteristics, and
various adaptations of the method have been found which are especially
suited for studying particular types of such flows. In the case of
steady flows in which atmospheric air does not behave as an ideal dia-
tomic gas, a very familiar and simple form of the compatibility equa-
tions may be employed. To illustrate, consider the Euler equation

av _
Pep=-eradp (1)

the continuity equation
aiv (o7) = 0 (2)

and the equation for the speed of sound (evaluated at constant entropy)
4
a? = 2 (3)

Rewriting equations (1) and (2) in the form of partial differential- -
equations and transforming the resulting expressions to the character-

istic or C;, C» coordinate system, there is obtained, upon combination

with equation (3), the following relations for steady flow:

ctg p <Bp - ap>+(_a§_+_a_§_>
pv2 oC; dC, oC; dCs

cth(aPJrBP)Jr(i_éé_
pve oC;  dCs oC1  dCo

A simple addition or subtraction of equations (4) and (5) then yields
the compatibility equations (see, e.g., reference 11)

Il
@)

(%)

and

|
o

(5)

9 =~p V2 tan B — (6)
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and
op ‘ %
— = V2 ¢ - 7
T pVZ tan B 3 (7)

Now, in reference 4 both caloric and thermal imperfections of air were
considered and it was found that the latter imperfections! have a neg-
ligible effect on shock processes in atmospheric air. It may easily be
shown that this conclusion also applies to expansion processes, and for
this reason caloric imperfections, only, are considered in detail in
the present paper. These imperfections become significant in air at
temperatures greater than about 800° R and first manifest themselves as
changes in the vibrational heat capacities with temperature. Thus, the
specific heats, cp and cy, and their ratio, 7, for the gas also change.
The equation of state remains, however, '

P = pRT (8)

and the specific heats are still related to the gas constant by the
-expression v

CP;CV=R (9)

Furthermore, it readily follows from the differential energy equation
and these expressions that the speed of sound is given by the simple
relation

a2 = yRT (10)

Combining equations (8) and (10) and noting that sin B = a/V there is
then obtained
VA4S

pVE = e
sin® B

(11)

Hence, on combining this equation with equations (6) and (7), it is
apparent that the familiar compatibility equations

d _ -2;ép B
dC; sin 28 oC;

(12)

 Thermal imperfections usually appear in the form of intermolecular
forces and molecular-size effects, and may be accounted for with
additional terms in the equation of state.




8 NACA TN 2646

and

oC, sin 2B Cp

also hold for the more general type of flow under consideration. These
equations are basic, of course, to two-dimensional characteristics
theory, and, as will be shown later, form a convenient starting point
for developing simpler theories of two-dimensional supersonic flow.

In order to apply equations (12) and (13), it is evident that the
manner in which ¥ and B or M are connected to p or 8 must be known.
Relations implicitly connecting these variables at temperatures up to
the order of 5000° R may be readily obtained from the results of refer=-
ence 4 by simply eliminating the terms therein accounting for thermal
imperfections, Thus we have as a function of the local static tempera-
ture and free-gtream conditions

()
Y =71 74 i A (/7 1) (k)
] 1+ (7g - 1) <%> (e:%TZ)z _

and

e 2 (To ToMo” 7i T 6 1 1
AYE * A N T T
7 \T 2 7i-1 To To e/o_l e/ -1

(15)

For isentropic flow along a streamline, the pressure is related to the
temperature by the expression

P _ V(W
oy - V(D) (16)
75

where

y(T) =

0/T _ 7i=1
e 1 -1—> (17)

e \T e6/T
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If there is a shock wave in the flow,® in particular a nose or leading-
edge shock, then the following additional relations obtained with
equations (8), (10), and (15) and the conditions for continuity of flow
and conservation of momentum along a streamline through the shock are
also required:

p—
o 1 To To > To
— = = { (W)~ == (1+7%2)+~@1+7NMN2)— =2 (1Y MB) | + b =
(18)
TNTMy "
Sy T M 2
§in2g = ——mm2 02 (19)
<j39i> -1
PN
and
tan & = —= L (20)
tan o 70Mba .
(pN/Po)"l

Using the local static temperature as a parameter, the term
2yp/sin 2 B in equations (12) and (13) may now be evaluated with equa-
tions (1) through (17). Equations (18) through (20) define the initial
conditions downstream of a leading-edge or other shock wave in the flow
field. Thus, equations (12) through (20) provide all the information
necessary to calculate the flow about an airfoil by means of the method
of characteristics. As described in detail in appendix A, the calcula-
tion is of three general types; namely, (1) calculation of conditions at
a point in the flow Tield between the shock and the surface; (2) calcula-
tion of conditions at a point on the surface; and (3) calculation of
conditions at a point just downstream of the shock. Case (1) entails
the use of both compatibility equations, while case (2) entails the
use of the compatibility equation for a second-family characteristic

21f there are no shock waves, then the subscript N in equation (16)
can, of course, be replaced with the subscript o.
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line in combination with the equation of the airfoil surface, and

case (3) involves the compatibility equation for a first-family line

in combination with the oblique shock equations. With the aid of the
three general types of calculations the entire flow field about an
airfoil can be built up numerically using a computing procedure working
from the leading edge downstream, In cases where changes in the vibra-
tional heat capacities with temperature are neglected, the calculations
are of course simplified since ¥ of the gas can be considered con-
stant, and temperature, pressure, and density ratios are simply the
ideal gas functions of Mach number.

Shock~Expansion Method

General.- This method of calculating supersonic flow of an ideal
gas at the surface of an airfoil is well known, entailing simply +the
calculation of flow at the nose with the oblique shock equations and
flow downstream of the nose with the Prandtl-Meyer equations., Deter-
mination of airfoil characteristics in this manner requires a small
amount of time, of course, compared to that involved when the method of
characteristics is used, hence the advantage of the former method. The
questions arise, however, as to exactly what the simplifying assumptions
underlying the shock-expansion method are, and what form the method
takes (for calculative purposes) when the gas displays varying vibra-
tional heat capacities.

The matter of simplifying assumptions may perhaps best be con=~
sidered by employing equations (12) and (13), the basic compatibility
equations. If these expressions are resolved into the streamline
direction and combined, noting that

¥ __ 1 oSp , Op 21
ds 2 cos B \oC; * dCs (21)
and
3B 1 fo’s] B
0 + 22
ds 2cos B \3C; dC, (22)
there is then obtained the relation
1 3% /ac,
op 38 foC 2yp  ®
ds L /dC; /sin 2 B s
+ ——————

35 /3C,
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defining the gradient of p along s. If flow along streamlines down-
stream of the nose is of the simple Prandtl-Meyer type, however, we
have

2 0%
‘o __ e B (2h)
Os sin 2 B 3s

Hence it is evident that the requirement for this type of flow is

3 fac,

—_—l<<1 25
35 /3C2 (29)

Equation (25) is, of course, simply an approximate statement of a well~-
known property of Prandtl-Meyer flows; namely, that flow inclination
angles are essentially constant along first-family Mach lines. It fol~
lows from equation (12) that if equation (25) holds, then the pressures
will also be essentially constant along these lines. It does not fol-
low, however, that the Mach number will be constant, or for that matter
that the first-family characteristic lines will be straight (as is the
case for isentropic expansion flows about a corner). In fact, it may
easily be shown that the Mach number gradient along C; is proportional
to the local entropy gradient normal to the streamlines, and that the

Cy 1lines are curved according to the change in M, Thus we see that
there is really only one basic assumption underlying the shock-expansion
method; namely, disturbances incident on the nose shock (or for that
matter any other shock) are consumed almost entirely in changing the
direction of the shock.® Within the limitations of this assumption it
is evident that the method provides a relatively simple means for cal-
culating the whole flow field about an airfoil, including effects of
shock-wave curvature (see appendix B). In general, of course, the
validity of this assumption can only be checked by comparison of calcu=
lations using this method with those using the method of characteristics.

The shock-expansion method for a calorically imperfect diatomic gas
is readily deduced from the equations previously obtained. For example,
flow conditions at the leading edge of an airfoil can be evaluated with
the oblique shock-wave expressions (equations (18) through (20)) and the
expression for conservation of energy (equation (15)). The variation
of flow inclination angle with pressure along the surface is then

8Tt is interesting to note that the assumption of Thomas (reference 12)
that pressure is a function only of flow deflection angle and entropy
is equivalent to this assumption. It follows, of course, that the
most general solution obtainable with Thomas's series representation
of the pressure is that given by the shock-expansion method.
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obtained by graphically integrating equation (2k); namely,

P .
53_5N=fN§_1%7%@_dp (26)
Pg

where the variables 7y, p, and B are evaluated using equations (1k)
through (17), employing the static temperature as a parameter, When
extreme accuracy is not essential, this rather tedious calculation can
be avoided and a relatively simple algebraic solution of the flow down-
stream of the nose can be employed.t The details of this solution are
Presented in appendix C. In the special case of flow at high supersonic
speeds about slender airfoils, the whole calculation becomes particularly
simple and warrants special attention.

Slender airfoils.~ If it is assumed that the local surface slopes
are small compared to 1 and in addition that the free~stream Mach number
is large compared to 1, it follows that o and B are everywhere small
compared to 1. In this case equation (24) takes on the approximate form

dp
— 1| = yoM 2
5 o V4% (27)

Furthermore, if it is assumed that % is constant at an average value
7 Tor a particular flow field (this assumption appears reascnable
since in the temperature range up to 5000° R the change in 7 1is less

than 10 percent as shown in reference 4), then the Mach number and
pressure may be related by the simple expression

7a-l
P 2
=y (22 )7 (28)

Equations (27) and (28) combine to yield the differential equation

(57 a(3) - 2

which readily integrates (between N and S) to the form

4 The tabulated results of Noyes (reference 13) may also prove useful in
this case for Mach numbers up to 3,
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Now denoting

MNSN = f(MoaN) (31)

and

0
there is obtained from the oblique shock equations, simplified to con-
form with this analysis,

2 2
£(MBY) = o (33)
2_ 2 2 278 v o o
Mooy® + 2= ){ 5 Mo®on® -1
a
and .
| 27aMo202 - (75-1
g(Mdy) = Ze¥o ;N " 1(73. ) (34)
a
where
yaal 2
Mooy = —3— MoBN 2 +<19§1 M05N> (35)

With equations (30) through (35) the pressures on the surface of an
airfoil may easily be obtained. In terms of pressure coefficient we

have
A (- 6
CP 78.M02[<po Py (3 )

or

_ ) . s
Cp = 2 g(%SN) [l-f(MOSN)<l - 5—3)} Ya~t -1) (37)

Ya




14 NACA TN 2646

The advantage of these slender-airfoil expressions lies, of course, in
their relative simplicity and thus the ease of calculation which is
inherent to them, It may be noted in this regard that the functions
T(Mydy) and g(Mdy) can be calculated once and for all with equations

(33), (34), and (35), provided the variation of 7 with M8y 1is known.

This calculation has been carried out for a constant value of Y equal
to 1.4, and average values of 7 assuming To = 500° R.5 The results
are presented in table I.

It should also be noted that the slender-airfoil expressions of
the shock-expansion method satisfy the hypersonic similarity law for
airfoils first deduced by Tsien (reference 14).6 A necessary condition
for the validity of these expressions is thus satisfled; however, the
accuracy of the shock~expansion method, whether for slender airfoils or
otherwise, remains to be investigated. Such an investigation is now
undertaken with the aid of the method of characteristics.

INVESTIGATION OF FLOW ABOUT ATRFOILS
AND DISCUSSION OF RESULTS

This study is divided into two parts: first, a consideration of the
effects of Mach number assuming air behaves as an ideal diatomic gas:
and second, a consideration of the combined effects of Mach number and
gaseous imperfections, with principal emphasis in the latter regard
placed on the caloric imperfections previously discussed.

Ideal Gas Flows

The effects of Mach number of primary interest here are, of course,
those which result from interaction between the leading-edge (or other)
shock wave and small disturbances originating on the surface of an air-
foil. Some insight into the nature and extent of these effects can be
obtained in the region just downstream of the shock wave without regard

SFor a given value of Ty, Ty, to the accuracy of this analysis, is the
ideal gas function of Mg®y. Thus, knowing Ty, 7y can be determined.
7N+7i_
2

®This fact was employed by Linnell (reference 15) to obtain an expression
for pressure coefficient equivalent to equation (37) for the case of
constant 7, and to obtain explicit solutions for the 1ift, drag, and
pitching-moment coefficients of several airfoils at hypersonic speeds.

The average value of y wused is 75 = 75(Mdy) =
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for the shape of the airfoil producing the shock. To this end it is

98 /ocy dp/oCy

convenient to consider the ratio = - (see equation (25))
% facz dp/aCz

which may be termed "the disturbance strength ratio" since in the region

under consideration it is a measure of the ratio of strengths of distur~-

bances reflected from the shock wave to disturbances incident on the

wave. This ratio may be evaluated with the expression

< 27NPN ’ ‘>
3®/3c; \sin2 BN FR) sin (By + &y = 0)

35 facs - <Sii7gP1;N & ’ > sin (By - By + 0)

(38)

which is easily obtained with the compatibility equations and the
oblique shock-wave equations as shown in appendix D. This calculation
has been carried out for Mach numbers from 3.5 to w (yy = 1.lt) and

flow deflection angles approaching those corresponding to shock detach-
ment (i.e., My ® 1) and the results are presented in figure 1. It is
evident that except near My # 1, the ratio is small (in absolute value)
compared to 1 throughout the entire range considered - this observation
also applies, of course, at lower supersonic Mach numbers., Thus it is
indicated that almost all of an incident disturbance is generally
absorbed in the shock wave, provided the air behaves like an ideal dia-
tomic gas.? This result is substantially the same, of course, as that
which is assumed in deriving the shock-expansion method of calculating
flows about airfoils, and therefore yields some credence in the method
for high Mach number as well as low Mach number applications.

As an over=-all check on the shock-expansion method, surface pres-
sure distributions calculated thereby are compared in figure 2 with
those obtained with the method of characteristics for a 10-percent~thick
biconvex airfoil (a = OO) operating at free-stream Mach numbers of 3.5,
5, T+, 10, 15, and », Predictions of the slender=-airfoil approximation
to the former method for high supersonic speeds are also shown. There
is no apparen% difference between the pressure distributions given by
the method of characteristics and the shock-expansion method up to a

7This result is contrary to that obtained by Lighthill (reference 16)
who reports that for hypersonic flows, a disturbance is reflected
from a shock wave with opposite sign but essentially undiminished
strength. ILighthill's conclusion appears to be based on an incorrect
evaluation of his results for the case of very high Mach numbers.
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Mach number of 10. At Mach numbers of 10, and above, however, the
latter method predicts pressures which are slightly low downstream of
the nose, becoming progressively lower with increasing Mach number.
This result would be deduced from figure 1 where it is observed that,
at the Mach numbers under consideration, expansion waves incident on
the nose shock are reflected back toward the surface as compression
waves of relatively small but increasing strength with increasing Mach
number., The effect of these waves does not become pronounced even at
infinite Mach number (see fig. 2(f)) and the shock-expansion method is
thus substantiated as being a reliable simplified method for predicting
the flow about airfoils at high supersonic speeds, again, so long as the
air behaves as an ideal diatomic gas. The further simplified slender=-
airfoil method also appears to be a good approximation over the entire
range of Mach numbers,® although, as would be expected from the assump=-
tions made in its development, it is in somewhat greater error than the
shock~expansion method at the lower Mach numbers.

The relative accuracy at high Mach numbers of the slender-airfoil
method, linear and second-order potential theories may be seen in
figure 3. As might be expected, the slender-airfoil method is more
accurate than linear theory at both My = 5 and 15, and more accurate
than second~order theory at My = 15. It is perhaps surprising to note,
however, that at the lower Mach number of 5 the slender-airfoil method
is also somewhat superior to the second-order theory.

The pressure distributions of figures 2 and 3 have been employed to
calculate the zero-lift drag of the biconvex airfoil, and the results of
these calculations, along with additional predictions of linear and
second-order theory, are shown in figure 4. Predictions of the shock-
expansion method are, of course, in best agreement with those of the
method of characteristics; while the slender-airfoil method, although
slightly less accurate than the shock-expansion method, is apparently
superior to both linear and second-order theory at Mach numbers above 3,

The preceding findings verify that so long as the disturbance
strength ratio is small compared to 1, the flow along streamlines is
essentially of the Prandtl-Meyer type. If we choose, on the basis of

these findings, a maximum absolute value for §§Z§9£ of 0,06 (note

3 /3¢, 3 [oC,

the maximum value of for the cases presented in fig. 2 was
3% foC,

8The hybrid expression for pressure coefficient obtained by Ivey and
Cline (reference 5) gives reasonably good results also, although not

as accurate as the slender-airfoil method at the higher Mach numbers
under consideration.
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approximately 0.06 at My = =), the region in which the shock-expansion

method is applicable can readily be obtained from figure 1. The upper
boundary line of this region is shown in figure 5 and it is evident
that it lies only slightly below (about 1° in general) the line corre=
sponding to shock detachment given approximately by the My = 1.0 line.
Almost the entire region of completely supersonic (ideal gas) flow is
then covered by the method.” (See shaded area of fig. 5.)

The question naturally arises concerning the corresponding range
of applicability of the slender-airfoil method. This question may be
answered in part by comparing separately the predictions of the method
for oblique shock flows and expansion flows with those of the exact
oblique shock equations and Prandtl-Meyer equations. Such a comparison
is shown in figure 6 in terms of the percentage error in the pressure
coefficients predicted by the slender-airfoil method. As would be
expected, this method does not exhibit good accuracy over the wide
range of applicability of the shock-expansion method; however, it is
indicated that it should predict pressure coefficients with less than
10-percent error down to Mach numbers as low as 3 for airfoils producing
flow deflections up to as high as 250.

As a further check on the utility of the slender-airfoil method,
the pressure coefficients on the 1lO0-percent-thick biconvex airfoil have
been calculated with this method and the shock~expansion method at a
Mach number of 10 and angles of attack up to about 300.lo The results
of this calculation are shown in figure T (see fig. 2(d) for a = 0°)
where it is seen that the agreement is reasonably good even at the
highest angle of attack. This fact is reflected in figure 8 showing
the force and moment coefficients for the airfoil as a function of angle
of attack. Little difference is observed in the force coefficients as
calculated by the two methods, while the moment coefficients display
more pronounced but nevertheless small differences at the higher angles
of attack.

°Tf it is required as by Rand (reference 17) that the entire flow field
be of the true Prandtl-Meyer type (i.e., that all flow properties be
constant along first-family Mach lines and not just © and p), then
the range of applicability of the shock-expansion method would be
appreciably smaller., However, it has been shown that this restriction
is not necessary.

10These conditions are within the range of applicability of the shock-
expansion method as defined in figure k; hence the use of the method
as a base of comparison seems justified. Since the shock-expansion
method is far less tedious to apply than the method of characteristics,
it will be employed as such a base in subsequent calculations whenever
the conditions being investigated have been determined to be within
its range of applicability.
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From these and previous considerations, the ranges of applicability
of the shock-expansion and slender-airfoil methods for ideal supersonic
gas flows are reasonably well established. It remains now to determine
the manner and extent to which gaseous imperfections in the flow at
higher supersonic speeds may alter these ranges, and the reasons
therefor,

Imperfect Gas Flows

As a first step toward investigating the effects of gaseous imper-
fections on the high Mach number flows under consideration, it is con-
venient to extend our consideration of the disturbance strength ratio

08 /3¢,

35 fac

eqézlzto 1.4 (the value for an ideal diatomic gas), the disturbance
strength ratio is small at arbitrarily large Mach numbers, provided the
flow deflection angles are not too close to those for shock detachment.
One of the most important effects of gaseous imperfections is, however,
to decrease ¥ of the disturbed sir below this value due to the excita-
tion of additional degrees of freedom (e.g., vibrational) in the mole-
cules at the high temperatures encountered at high Mach numbers. Indeed,
at arbitrarily high Mach numbers it might be expected that ¥y of the
disturbed air would approach 1, since the number of degrees of freedom
may effectively become very large (see, e.g., references 3 and 6). In
this case, however, the extent of the disturbance flow field is decreased
to a layer at the surface of the body which is negligibly thin compared
to that for the case of ideal gas flow. Thus it is apparent that signi-
ficant changes in the flow about airfoils at high Mach numbers may
result from decreases in 7y of the disturbed air; hence the effects of
such decreases on the disturbance strength ratio would appear to warrant
attention, ’

« It is recalled that when air exhibits a constant value of vy

A detailed analysis of these effects is impractical at the present
time due to the limited range over which the variation of 7y with tem~
perature is known. However, some knowledge of these effects can be
gained by repeating the ideal gas calculations for constant values of
Yy between 1.k and 1.0.%! Such calculations have been carried out at

llSince the enthalpy is negligibly small compared to the mass kinetic
energy of the undisturbed fluid at the high Mach numbers of interest
and, hence, 7y of this fluid does not influence the flow, this approach
corresponds to employing an average value of ¥ for the disturbed
fluid. Since only flows of dense air are considered here, heat-
capacity-lag phenomena are neglected (see references 5 and 6).
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35 /3c;
35 [3C2

for a gilven . &nd the results are presented in figure 9. It is seen
that except near shock detachment, the disturbance strength ratio
increases with decreasing TN approaching 1 as 7y approaches 1. This

35 /3C,

38 /3C;
less than 0.1 at 7y = 1.3. It might therefore be expected that the

shock-expansion method would continue to apply with reasonable accuracy
so long as 7y of the disturbed flow is not appreciably less than this
value. This point has been checked with the methods developed pre-
viously for analyzing the flow of a calorically imperfect dlatomic gas
at local air temperatures up to about 5000° R (note 7y has a value
only slightly less than 1.3 at this temperature). In particular, the
pressure distribution on the lower surface of the biconvex airfoil at
Mo = 10, a=19.9°, and Ty = 500° R (Ty®L4000° R at leading edge) has
been calculated with both the method of characteristics and the shock-
expansion method.!2 The results of these calculations are presented in
figure 10 and it would appear that the conclusions drawn from figure O
pertaining to cases where Yy 1is of the order of 1.3 or greater are
substantiated. Pressures in the expansion flow about the upper surface
are not influenced (due to the low temperatures) by caloric imperfections
and hence are the same as shown in figure T(Db).

infinite Mach number since in this case has its maximum valﬁe

increase is slow at first; for example, the value of is still

Shown also in figure 10 is the pressure distribution obtained by
the shock-expansion method for an ideal gas (7 = l.4). It is apparent,
on comparing this pressure distribution with the other distributions,
that although the effect of caloric imperfections on the disturbance
strength ratio is small, the pressures are appreciably reduced by the
increase in specific heats. The extent of this reduction is more com~
pletely illustrated in figure 11 where the lower surface pressure distri-
butions on the biconvex airfoil are presented for Mp=10 and T =500° R,
at o = 0°9 10°, 19.9°, and 30°. As one might expect, the reduction in
pressures increases with angle of attack (due to the corresponding
increase in static temperature of the disturbed air). The pressure
coefficients calculated with consideration for the imperfections in the
gas are less on the lower surface (up to 6 percent at the leading edge
and 15 percent at the trailing edge) than those calculated assuming the
gas béhaves ideally. The upper-surface pressures are again unaffected

12por added ease of calculation the expansion method of appendix C was
employed. This method is also employed in all subsequent calculations
of this type since it has been found to yield results differing by
less than 1 percent from those obtained by the more tedious graphical
integration method.
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by the caloric imperfections of air in all the cases presented (except
at a = 09) since this surface experiences lower pressures and hence
lower temperatures. They are therefore the same as shown in figure T.
Shown also in figure 11 are the pressure distributions calculated with
the slender-airfoil method for 7 = 7g+ The accuracy of this simpli-
fied method is substantially the same as was previously observed for
the corresponding method in the case of ideal gas flows, although the
local error may be greater than the reduction in pressure coefficients
due to the caloric imperfections of air. This error is somewhat com-
pensating, however, in its effects on the force and moment coefficients,
as will be seen,

The force and moment coefficients, corresponding to the lower-
surface pressure distributions shown in figure 11 and the upper-surface
distributions of figure 7 are bresented in figure 12, The reduction in
the lower-surface pressures leads, of courée, to a general reduction in
all three coefficients (up to about 10 percent for « = 30°). The
slender-airfoil method again predicts these coefficients with surprising
accuracy.

In order to further assess the accuracy of the slender-airfoil
method some additional calculations were carried out for the biconvex
airfoil at « = 09 and My = 20 and 30. The pressure distributions for
these cases were calculated by the shock-expansion method, slender-
airfoil method (7 = 74), and slender-airfoil method (y = 71). These
results are presented in figure 13 and it is observed that the use of
75 Trather than 71 1mproves the accuracy of the slender~-airfoil method.
The extent of this improvement in the case of drag coefficient is shown
in figure 14 - it would appear that predictions of the slender-airfoil
method (y = 7a) and shock-expansion method are in as good agreement as
for ideal gas flows (see fig. 4). On the basis of these and previous
results, it may be concluded then that not only does the shock-expansion
method retain its range of applicability when air exhibits caloric
imperfections provided 7y of the disturbed air is not appreciably less
than 1.3, but also the slender-airfoil method (y = 7s) retains its
range.

It would be surprising indeed, however, if this conclusion con-
tinued to apply as v gg the disturbed fluid approached 1 since, as
C

discussed Previously, is not small compared to 1 in this case,

1
38 /dC,
but would appear, in fact, to approach 1. This matter may be investi-~
gated in the same manner as the effect of 7y on the disturbance
strength ratio was investigated, namely, by using the ideal gas relation-
ships in combination with appropriate values of v,
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The limiting case of infinite free-stream Mach number and 7y = 1.0
(for the disturbed fluid, see footnote 11) has already been investigated
by Busemann (reference 18) and more recently by Ivey, Klunker, and Bowen
(reference 19). 1In this case, as pointed out previously, the shock wave
emanating from the leading edge remains attached to the surface down~
stream of the leading edge (this is easily verified with the oblique
shock-wave equations) and the disturbance flow field is confined to an
infinitesimally thin layer adjacent to the surface. In addition, the
velocity along a streamline downstream of the shock is constant, as may
easily be shown with the compatibility equations. Surface pressures
therefore become a simple function of airfoil geometry,

I ddg £ .
Cp = 2 sin® 8g + 2 cos dg = sin dgdx (39)
o

varying, to a first approximation, directly with the square of the com~-

" ponent of free-stream velocity normal to the surface (i.e., the flow is

approximately of the Newtonian corpuscular type). With this theory
then, and the method of characteristics, we can get an idea of both the
extent to which extreme changes of 7y from 1.4 toward 1 will alter
surface pressures, and the accuracy with which the shock-expansion
theory predicts the alterations., To this end, figure 15 is presented
showing the pressure distributions about the biconvex airfoil at.

Mo = w as calculated by the several methods for different values of 7.
It is observed that, whereas the shock -expansion method agrees very
closely with the method of characteristics for ¥ = 1.4, there is a
large difference at ¥ = 1.,05. This, of course, is precisely what one
would expect from the previous discussion of the disturbance strength
ratio. On the other hand, if the two characteristic solutions and the
Busemann method are considered in order of decreasing 7, it is indi-
cated that the characteristics solutions approach the Busemann theory
as 7y approaches 1, For 7 = 1.0 and My = « the shock-expansion
method, in turn, predicts a discontinuous pressure distribution with a
pressure coefficient equal to that of the Busemann theory at the leading
edge but a pressure coefficient of zero at all points downstream of the
leading edge. Hence it may be concluded that when the free-stream Mach
number approaches infinity and 7 approaches 1, the Busemann method
rather than the shock-expansion method for calculating the flow about
airfoils should be employed.

CONCLUDING REMARKS

The flow about curved airfoils was investigated énalytically at
high supersonic speeds first assuming air behaves as an ideal gas, and
then assuming air behaves as a thermally, although not necessarily
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calorically, perfect gas. (Caloric imperfections had previously been
observed to be of predominant importance in free flight, at least for
local air temperatures up to the order of 5000° R.) It was found that
80 long as air exhibits no imperfections (i.e., behaves as an ideal
diatomic gas) small disturbances originating on the curved surface of

an airfoil are almost completely absorbed in the shock wave emanating
from the leading edge (or any other location on the surface), provided
the flow deflection angles are not too close to those corresponding to
shock detachment, This result is essentially independent of Mach number,
and is consistent with the early calculations of Crocco concerning sur-
face pressure gradient at the leading edge of an airfoil. It was con-
cluded that in ideal gas flows the shock-expansion method for determining
flow conditions at the surface of an airfoil would apply with good
accuracy at arbitrarily high Mach numbers. This conclusion was verified
by the excellent agreement found between Pressure distributions on a
10-percent-thick biconvex airfoil at 0° angle of attack calculated with
the shock-expansion method and the method of characteristics. It was
further shown that the former method can be easily employed to construct
the entire flow field about an airfoil in a manner that would account
for shock-wave curvature and entropy gradients resulting therefrom.

A high Mach number approximation to the shock-~expansion method for
thin airfoils was also investigated, and was found to apply with good
accuracy at Mach numbers above 3 and flow deflection angles up to 25°,
The essential feature of this slender-airfoil method is, of course, its
simplicity, and for that reason it may prove useful for some engineering

purposes,

Effects of caloric imperfections were first investigated qualita-
tively considering the reduction in the ratio of specific heats from
1.4k toward 1.0. It was found that as the ratio decreased, the extent
to which disturbances reflected from a shock wave increased. In the
limit as the ratio approached 1, the reflection was complete, and the
shock wave became tangent to the surface of the airfoil. So long as the
ratio did not decrease appreciably below 1.3, however, it was found that
less than 10 percent of a disturbance was reflected; hence the simple
shock-expansion method might be expected to continue to apply. 'This
matter was checked quantitatively for the biconvex airfoil with the aid
of a generalized method of characteristics including effects of caloric
imperfections (up to local air temperatures of the order of 5000° R,
corresponding to a ratio of specific heats of about 1.3). It was found
that the shock=expansion method was substantially as accurate as for
ideal gas flows, provided it was also generalized to include effects of
these imperfections. The Principal effect of the reduction in specific
‘heat ratio was to reduce the bressure coefficients below their ideal
gas values by as much as 15 percent. The reduction in force and moment
coefficients was somewhat smaller, being about 10 bercent. Similarly
it was found that the slender-airfoil method, modified to employ an
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average value of the ratio of specific heats for a particular flow
field, exhibited essentially the same accuracy as the analogous method
for ideal gas flows. Thus it is indicated that the generalized shock-
expansion method and its slender-airfoil counterpart can be applied
with good accuracy up to very high free-flight Mach numbers. If the
flow deflection angles are less than about 120, these Mach numbers are
of the order of the so-called escape Mach number (i.e., Mach numbers
as high as 30 to 35).

At even higher Mach numbers where the ratio of specific heats is
expected to decrease appreciably below 1.3, and in fact perhaps to
approach 1, it was not possible to obtain an accurate check on the pre~
viously discussed qualitative considerations. It was undertaken, how-
ever, to compare the pressure distributions on the biconvex airfoil
predicted by the Busemann method (for the 1limit of the ratio of specific
heats approaching 1 and Mach number approaching infinity) with those
predicted by the shock-expansion method and the method of characteris-
tics at infinite Mach number (employing a comstant ratio of specific
heats of 1.05). As was expected, the shock-expansion method was in
very poor agreement with the method of characteristics, whereas the
Busemann method was in relatively good agreement. It is therefore

-indicated that for extremely high Mach numbers (something'in excess of

the sea-level escape Mach number) the Busemann theory may apply.

Ames Aeronautical Laboratory
National Advisory Committee for Aeronautics
Moffett Field, Calif., Jan. 9, 1952
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APPENDIX A
METHOD OF CHARACTERISTICS FOR TWO-DIMENSIONAL FLOW

OF A CALORICALLY IMPERFECT GAS

In the application of the method of characteristics for a calori-
cally imperfect dilatomic gas to the particular problem of analyzing the
flow about curved two-dimensional airfoils, many of the calculations
are identical to those encountered in the solution of any problem where
characteristics theory is employed. Since the details of these calcu~
lations are well known and well reported (see, e.g., reference 11),
they will not be repeated here.

A lattice-point system with an initial-value, numerical computing
procedure will be used. The form of the compatibility equations to be
employed was developed previously;i3 however, it is convenient for pur-
poses of calculation to substitute the pressure ratio, p/qo, into these
equations and to rewrite them as difference equations. Equations (12)
and (13) are thus reduced to the following forms

(/ag)g = (p/ag), = -raldc - 8p) (A1)
and
(p/qo)C - (p/qo)B = Mg (8¢ - 8p) (A2)
where
27(p/a,) .
M= sin 2B (43)

It is also convenient to employ several reference curves, These curves
can be divided into two groups. The general reference curves consist of
7 and V(T) as a function of temperature, T. Equations (14) and (17) are

18mn1g form of the compatibility equations (in p and & coordinates)
was also used in obtaining some of the characteristics solutions for
ldeal gas flows. The majority of these solutions were carried out,
however, with the compatibility equations in B, 5, and entropy
coordinates, since it was found that greater accuracy was usually
obtained for a given net size. 1In general, the net size employed
yielded pressures at from 30 to 35 surface points on an airfoil with
a maximum error in the corresponding pressure coefficients equal to
less than 1 percent of the pressure coefficient at the leading edge.
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i

used to determine these curves. A second set of shock-wave reference
curves consisting of p/qo, o, and & as a function of temperature, T,
. are determined by use of equations (18) through (20) - the values of T,

and My are presumed known.

In the computations three types of points are encountered. These
are (1) a point in the flow field between the shock wave and the air-
foil surface, (2) a point on the airfoil surface, and (3) a point just
downstream of the shock wave. Each one of these types of points
requires a slightly different computing procedure and they will be con-
sidered in order.

Point in the Flow Field Between the Shock Wave
and the Airﬁoil Surface

Figure 16(a) shows a schematic diagram of the system of points to
be considered in these calculations. Point C is the unknown point at__
the intersection of the first-family characteristic line passing through
point A and the second-family characteristic line passing through
point B. Six quantities are known at both points A and B, and the
problem is to calculate these same quantities at point C. These quanti-
ties are x, y, 5, p/qo, T, and Ty. The first five quantities are of
obvious significance. The sixth, Ty, is defined as the static tempera-~
ture, just downstream of the shock wave, on the streamline passing
through the point C.

[t

» The physical coordinates of the point C (xC, yc) may be determined
by standard procedures such as those given in reference 11. In order to
determine the quantity 8¢, it is necessary to solve equations (Al) and
(A2) simultaneously; thus

A Ba + Mg 8g + (/a5), - (p/ag)y
' Ay + Mg

8¢ = (Ak)

Equation (Al) or (A2) is then used to obtain (P/qo)c .
There remains only the problem of determining Tq and‘TNC at
point C. The temperature TNC is obviously constant along the stream-

line through C., This quantity may therefore be calculated in the same
manner as the entropy is calculated in similar flow fields for ideal gas
processes (see, e.g., reference 11). Furthermore, since the flow along
streamlines downstream of the shock wave is isentropic, equation (16)
may be applied in the form

£}
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(p/a0) ¥ (Ty,)

(p/qo)N ) ¥ (Tp) (83)
c

The pressure, (p/qo)NC » 1s defined in a manner analogous to TNC s and

may thus be determined using the shock-wave reference curves and the
known value of TNC. Similarly, W(TNC) may be determined from the

general reference curves. The only unknown in equation (A5) then is
V(Tc) which may now be calculated. Once V (T¢) is determined, Tp may
be determined by again using the general reference curves. All six
quantities, xq, yq, 8¢, (p/qo)C, To, and TNC have now been determined.

Point on the Airfoil Surface

Figure 16(b) shows a schematic diagram of the points to be con-
sldered in these calculations. The physical coordinates of point C,
(xC, yc), are first calculated by solving simultaneocusly the equation
of the second-family Mach line passing through point B and the equation
of the airfoil surface. When Xc and yo have been determined, S5c 1s
readily obtained from the equation of the airfoil surface. Equation (A2)
is then applied to determine (p/qo)c.

Since the airfoil surface is a streamline,TNC is constant along the

surface and may be evaluated at the leading edge. The temperature, Tos

may then be determined using equation (A5) and the previously described
procedure. All six quantities, xq, yg, (p/qo)c, 8¢» Tg, and Ty, , are
thus determined.

In the special case of the first point on the airfoil surface
downstream of the leading edge, the pressure ratio is calculated using
the procedure of reference 9. This procedure is easily shown to be
applicable to calorically imperfect gas flows providing the obligue
shock-wave equations of the present paper are employed.

Point on the Shock Wave

Figure 16(c) shows a schematic diagram of the points to be con-
sidered in these calculations. The physical coordinates of point C
(xg, yo) are first calculated by solving simultaneously the equation
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of the first-family Mach line passing through point A and the equation
of the shock wave linearized at point D, the last known point on the
wave. The variation of p/qo with & along the shock wave may be
approximated by the relation

. . ,
(p/qo)c - <P/qo)D = —(—i—éi‘g)— IN (8¢ - &p) ‘(A6)

a(p/ag)

In this equation is the rate of change of p/qo with &

N
along the downstream side of the shock wave evaluated at point D.

Because of the complicated nature of the shock -wave equations, it is

d(p
generally easier to evaluate —S—Zggl

graphically or numerically
N
from the shock-wave reference curves. Equations (Al) and (A6) are
solved simultaneously for &g, thus

a
My Byt ______(iéqo) g D7 (p/ag), - (/a), )
B = (a7
¥ )"A + *d(g%)

N

When ©®¢ has been calculated, Ty, and in turn (p/qo)c, may be deter-
mined from the shock-wave reference curves. Since point C in this case
is Jjust downstream of the shock wave, Ty and TNC are identical.

The six quantities, x5, Yo, (p/qo)c, 8¢y Tg» and Ty, bave now been
determined,
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APPENDIX B
SHOCK-EXPANSION METHOD FOR CALCULATING THE FLOW
FIELD ABOUT AN ATRFOIL
An initial value procedure which is similar to, although markedly

simpler than, that associated with the method of characteristics may

be employed to carry out this calculation.l4. To illustrate, consider
the sketch:

First family (C,) Mach line

Streamlines

\A/’r foil surface

§

With the oblique shock-wave and expansion equations, all fluid proper-
ties at points M, A, C, and so forth on the airfoil surface may be cal~-
culated in the usual manner. If the point A is chosen close to M, the
first-family (Cl) Mach line connecting A to point B on the shock wave
may be considered straight and inclined at an angle to the free-stream
direction equal to Bp + By Similarly, the segment MB of the shock
wave may be considered straight and inclined at the angle oy to the
stream direction. Thus the point B in the flow field . may easily be
determined. The direction of BD (a segment of the streamline passing
through B) is the same as the tangent to the surface at A, and the :
attitude of the segment BE of the shock wave is fixed by this direction.,
The locations of points D and E in the flow field are thus fixed once
point C is chosen.'® The construction of the remainder of the flow field
follows in a similar fashion. Having determined the shapes of the
streamlines, the fluid properties along these lines are, of course,
determined in the same manner as those along the surface.

141t is clear, of course, that an "average value™ procedure could also
be employed. Such a procedure would, in fact, be the more desirable
in some cases, since a coarser net may be used.
The point C should, of course, be chosen close to A.

-
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It is important to note that this method is spplicable to the
determination of the flow not only in the region adjacent to the air-
foil (whether the surface be concave or convex) but also in the region
downstream of the airfoil; hence it may, for example, prove useful in
downwash studies and the like.
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APPENDIX C
APPROXTIMATE SOLUTION FOR PRANDTL-MEYER FLOW

OF A CALORICALLY IMPERFECT GAS

The following solution is obtained with an analysis similar to
that used in Meyer's original paper (reference 20). A schematic dia-
gram of the subject flow field is shown in figure 17, It is evident
that the change in flow-inclination angle for Prandtl-Meyer flow can
be written as follows

Oy -8 = (By = B) + (wy ~w) (C1)

Since the flow is isentropic, a given value of the local pressure will
determine the Mach angle, B. The problem then is to evaluate the
angle, w. To this end the velocity components tangential and normal
to the first-family Mach lines may be expressed in the usual manner in
terms of a potential ¢, thus

u = éi (c2)
or
199

a=;§; (03)

It is clear, however, that these components are functions of w only;
hence it is convenient to define a new velocity potential which is a
function of w alone. Such a potential is

ow) = ; (ck)

The velocity components may then be written in terms of this new
potential,

u=9¢ | (c5)
a =0, (c6)

The resultant velocity is given by the expression

VE = 02+ g2 (c7)
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Equation (15) for conservation of energy may be written in terms of the
local temperature as follows:

V+2< RT+2RT(__QLT_ A2 (c8)
741

G/T -1

The constant, A, is evaluated at the conditions existing upstream of the
expansion region; namely,

_ 7i 0/Ty
Ve + < >RTN + 2RTy <e /TN > (Cc9)

Equations (C7) and (C8) are then combined to yield

* 4 0,5 = -2RT ( b o/T >+ A2 (c10)
\71-1 /T 4

It was shown previously, however, that
= 9RT . ' (c11)

Equations (C6), (Cl0), and (Cll) may therefore be combined to obtain
the following relationship:

; 6
¢2+¢w2[1+§< i, O >]=A2 (c12)
7 7i-l ee/T_l

or

7541 2 71 71-1 71 _8/T
2 + o 2{ L —_ [—— = A2 cl
TR Tty Ly T &0/T_1 (c13)

From the imperfect gas relationship for 7 we have

2 e/T
6 e
71 i 1 + (7 ‘l) <"“> (eQ/T 1)2 (Clh_)

R CSIOr =




32 , NACA TN 2646

Substituting this relation into equation (C13) there 1s then obtained

2 2| 7+l 2 0 _
where
. (9/m)ef/T [ 6/T J
F<6> - = {l D (e [P @ (c16)
T/ . 6/r 2
TR 4e1) (/)28
’ 74 (e8/T.1)2
Now
T a2
726 = 7,58 (c17)

For every value of T/0 there is thus a particular value of a2/7iR9.
The function F(6/T) is therefore uniquely determined for any value

of a2 sgince 71R6 1s of course a constant. With this point in mind,
let

F(6/T) = G(a®/74R8) (c18)

Figure 18 shows G(a2/y;R0) plotted as a function of a2/y;{RO. This
curve 1s approximated with the following simple relation:

2 0.14
G(a2/7:RO) = 0.38 & 4 0.71 - ——2= cl
(a2/74R6) 3 T 7 Py (c19)
8.2
for 0.18 < < 1.0
7iR9
and
- G(a2/74RO) = 0 (c20)
a
for 0O .18
r < -RO <0

1
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Equation (Cl19) is also plotted in figure 18 to show the accuracy of this
approximation. Consider first the case when G d1s given by equa-
) tion (C19) which is written in the form
1
G(a®/7;RO) = £a® + u + 1 = c2l
§ /7;R6) =& Wt 3 (c21)

Where obviously

£ = O.38/7i39
L= 0.71 | (c22)
n = -0.1% (7,R6)

Equation (C21) is substituted into equation (C15) and with equations (C18)
and (C6) the following expression results:

. oy
%¢4+<.7_1E+_ﬁ>¢w2+®2+2—n—A2=0 (c23)
71 @ 7i-l 71 71

In order to simplify this equation the following substitutions are made:

. \
D2=<7_i_+.l.+_2£ + 8 parzo 2y (cek)
. 7i-1 o 7y 75 71
» %‘(A‘g-%ﬂ)
sin?y = —& — (c25)
D
sin®T = (c26)
2
D
and T
2 2 2
2,2 = D co; T (Tw) (c27)
—— ¢
71

i
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Equation (c23) then reduces to

b cos b sin® 1 L4 sin2® y
cost T (1y)% + —=Y¥ o052 1 (10)% + — ———E - 0 (c28)
D D

This equation is solved for ., thus

w2

1/2

Tw =~/@§ 1 (cos T - cos V) (c29)
Dcos T

qw = }g cos T dT (C30)

(cos T - cos v)1/2

or

This expression is readily integrated to obtain the following equation
relating w +to the local velocity:

w - Wy =~/'T{2 [E(k,z) - E(k,zN)] - [F(k,z) - F(x, zN)pf (c31)

where
E elliptic integral of the second kind
F elliptic integral of the first kind

k sin g-(modulus)

sin~t <__§_i_n__'r_ég > (amplitude)
sin v/2

N

The procedure for calculating corresponding values of the pres-
sure, p, and the deflection angle, 5, is straightforward with the aid
of the preceding equations and may be summarized as follows:

- Calculate A%, equation (C9)
Calculate DZ, equation (C2k)
Calculate Vv, equation (C25)

Assume a value of T, less than Ty
Calculate p, equations (16) and (17)
Calculate V2, equation (C8)
Calculate 7y, equation (C1k)

~N O\ Fw o
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8.
9.
1c.
11.
1=2.
13.

Calculate
Calculate
Calculate
Calculate
Calculate
Calculate

35

a2 (or @,°%), equation (C11)

M and, in turn, B from V and a
w2 (or ¢2), equation (CT)

t, equation (C26)

w , equation (C31)

8, equation (C1)

This procedure is followed so long as the quantity a2/7iR9 is
greater than 0,18,
than approximately 1000° R.) For values of a2/y;R6 less than or equal
to 0.18 (or temperatures less than about 1000° R) G is set equal to zero
(see equation (C20)). 1In this case equation (Cl5) reduces to the same
form as for an ideal gas, and therefore the well-known ideal gas rela-
tionships can be used.

(This is equivalent to the temperature being greater
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APPENDIX D

EVALUATION OF THE DISTURBANCE STRENGTH RATIO

Consider the element of an oblique shock wave shown in the accom~
panylng sketch

35 /aCy
095 /3C,

strengths of reflected and incident disturbances, respectively, since
all disturbances incident on the wave between points. D and C must
travel along first-family characteristics which cross Cp between

D and A, while all disturbances reflected from the shock wave in this
region must travel along second-family characteristics which cross Cy
between A and C. This ratio, termed the disturbance strength ratio,
may be evaluated locally just downstream of the shock wave in the fol-
lowing manner. The points D and C are chosen sufficiently close
together so that the difference in Pressure between these points may
be written

It is evident that the ratio is a measure of the ratio of

op op
Po - Pp = =— ACs + =~— AC D1
C D X, 2 3¢, ACy (p1)
or
dp
PC - PD = ;1—5— (SC'SD) (D2)

N
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o)
where a% is the rate of change of pressure with flow deflection
N .

angle on the downstream side of the wave. Now the change in deflection
angle between D and C 1is given by the relation i

0% 0%
8c=9p = 563 202 * 3G, NCq - (D3)

Thus equations (D2) and (D3) combine to yield

a | )
Po-Pp = pl 222A£2+- gz AC1> o (Dk)

But the compatibility equations (equations (12) and (13)) combine with
equation (D1) to give . A

L2 (% éﬁ_ﬂcy .
Pe™p T T 2By \ oC, w%' oCy . (22)

]

/
Equating the rlght—hand members of this and the prev1ous expression and

rearranging, there is then obtained

| ; | <27NPN l >
| 3v/30, _ \ein 2By ( > (e
N 98/3C2 < 27PN dp A~Cl \
- L sin 2By 3 ) w

{
ANC
The ratio EEE follows from the sine law, however, thus the; disturbance

strength ratio is given by the relation ¢

38/oc, _ \sin ?Bm’ﬁ’n oin (Pydy-o) - (o7)
95/9C 5 <;27NPN _ dpl ‘> sin (BN—8N+G)
N .

+

which holds for both ideal and calorically imperfect gas flows,

!
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If the shock wave is attached to the airfoil at the leading edge
(or more properly if My>1), this expression may be used with equa-
tion (23) to determine the surface pressure gradient at that point. A
calculation analogous to this for ideal gas flows has already been car-
ried out by Crocco, Schaefer, Munk and Prim and others as discussed pre-
viously.
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TABLE I.- TABLE OF FUNCTIONS FOR SLENDER-ATRFOIL METHOD

Y= 7 = 75 (T = 500°R)
Moy /
0 .000 |0 1.400| 1.000 |0
.05 .072 | .009901 | 1.ko0| 1.072 .009897
.10 .148 | .01961 1.400 | 1.149 .01959
.15 .230 | .02912 | 1.%00| 1.230 .02909
.20 .316 | .03845 1.%00| 1.316 .03841
.25 Lo06 | .okT60 1.400 | 1.k406 .0k755
.30 502 | .05656 1.399 | 1.502 .05649
.35 604 | .06537 1.399 | 1.603 L0652k
ity .710 | .07393 1.399 | 1.710 .07380
A5 823 | .08235 1.399 | 1.822 .08220
.50 Ol | .09058 1.399 | 1.94%0 . 09040
.55 .065 | .09863 1.399 | 2.064 .09841
.60 .195 | .1071 1.399 | 2.19% .1062
.65 .332 | .11h2 1.399 | 2.330 .1139
.70 ATk | L1217 1.399 | 2.473 .1213
75 624 | L1290 1.398 | 2.622 .1286
.80 780 | .1362 1.398 1 2.777 .1356
.85 L1431 1.398 | 2.939 .1k425

112 | .1k99 1.398 | 3.108 L1492
289 | .1565 1.398 | 3.284 1557
L73 | L1630 1.397| 3.466 .1620
862 | 1753 1.396 | 3.852 1740
.280 | .1869 1.396 | L4.266 .1853
.728 | .1978 1.395| L.708 .1958
.206 | .206k4 1.3931 5.179 .2056
715 | .2178 1.392 | 5.679 2147
256 | .2269 1.391 | 6.207 2232
827 | .2354 1.389 | 6.764 .2309
431 | 2433 1.388 | 7.349 .2381
.066 | .2507 1.386 | T.962 2Ll
ST3% | L2577 1.384 | 8.605 .2508
L1 | .26k6 1.382 | 9.274 .2564
A7 2702 1.3801{ 9.973 .2616

'_I
O\O(DCDNO\O\\E\JI#’FwwwwMNNNMNNHI—‘HI—'HHHHHHH
L)
O
=
w

» 8 L N ] L] L I B L] [ »
@CD—QO\\H-P‘UJI\)!—‘O\OOO—QO\\N-P‘WI\)!—‘%&%

NMAOMPMPORPOPONODOHRRRERERRFRFFEF
. 1 ) e o & . [ I T I 2 )

10.93 .2759 1.378 | 10.70 2664
11.73 .2812 1.376 | 11.46 L2709
12.56 .2862 1.374 | 12.24 2749
13.42 .2908 1.372 | 13.06 .2788
14.32 .2951 1.370 | 13.90 .2823
15.25 2992 1.369 | 14.77 .2856
16.21 .3030 1.367 | 15.68 .2887

»
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TABLE I.- CONTINUED

Y =74 7 = 75 (Tg = 500°R)

T(Mody)| 72 | e(Mody)| £ (Myby)

R w W W W
] L] . . . [ ) . -
FhOoO oo ENMO

* » L - . L] * 8 L] . L ] * e .8 . L ] * & s 9 L N ) L]
\HO\J‘IO\HO\HOCDO\-P'NOOZ)O\-F'I\JOODO\-F-“I\)OCDO\

SERR
OUoOUWoOUwo

o b
Ul
e & 8

0.3066 | 1.365 | 16.61 0.2916
<3130 | 1.362 | 18.56 .2968
-3187 | 1.360 | 20.64 .3015
3237 | 1.358 | 22.83 .3057
3280 | 1.356 | 25.16 .3094
-3322 | 1.354 | 27.60 .3128
3358 | 1.352 | 30.17 .3158
.3389 | 1.351 | 32.86 .3186
3418 | 1.350 | 35.68 .3211
<3443 ) 1.349 | 38.63 .3234

3466 | 1.349 | k1.70 .3255
-3487 | 1.348 | kh.o1 .3275
«3506 | 1.347 | 48.23 .3292

.3523 | 1.347 | 51.68 .3309
-3539 | 1.346 | 55.26 .3323
-3553 | 1.346 | 58.96 +3337
-3566 | 1.346 | 62.79 .3350
.3578 | 1.345 | 66.77 .3363

.3684
3693
.3701
-3707
.371h
.3719
.3723
3727
.3731
.3735
.3738
.3740
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TABLE I.- CONCLUDED

Y =7 7 = 7, (T, = S500°R)
MogN
g(Mody) |F(MB)| 75 | 8(MeBy) | £(Medy)

16.0 432.3 | 0.3745
17.0 W87.7 1 .3749
18.0 546.5 | .3752
19.0 608. .3755
20.0 67h.2 | 3757
22.0 815.3 | .3761
2k.0 969.8 3764
26.0 | 1138 .3766
28.0 | 1319 .3768
30.0 | 151k 3770
35.0 | 2060 3772
Yo.0| 2690 3TTh
45.0 | 3Lkok 3775
50.0 | L4202 3776
60.0| 6050 3TTT
70.0 | 8233 3778
80.0 | 10750 .3778
90.0 | 13610 <3779
100.0 | 16800 3779
I o .3780

43
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Figure 2. — Pressure distribution on 10 —percent-thick biconvex airfor/
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Figure 6.— Accuracy of slender-airfoil method in predicting pressure
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Figure 7. — Pressure distribution on 10 - percent-thick biconvex
airfoil section for various angles of attack at Mo =10 (r=.4)
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Figure 8— Variation of force and moment coefficients with angle of atfack
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Figure I/, — Pressure distribution on lower surface of /0 - percent-thick biconvex

airfoil section for various angles of attack at Ms = /0 and T = 500° R.
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(a) Point in field.

! Airfoil surface \
. G,

(b) Point on surface.

]

(c) Point on shock wave.

Figure [6.— Diagram of point sysfem in the method of characteristics for the
two - dimensional flow of a calorically imperfect gas.
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